

PRODUCT DATA SHEET Amcel KP20 Acetal Copolymer

Amcel® acetal copolymer grade KP20 is a medium-viscosity, general purpose injection moldable grade.

PROPERTIES	TEST METHOD	UNITS	VALUE
PHYSICAL			
Density	ISO 1183	kg/m^3	1410
Melt Flow Rate	ISO 1183	gms/10min	9.0
Melt Volume Rate (MVR)	ISO 1133	cm ^{^3} /10min	8.0
MECHANICAL			
Tensile Modulus (1mm/min)	ISO 527-2/1A	MPa	2600
Tensile Stress @ Yield (50mm/min)	ISO 527-2/1A	MPa	64
Flexural Modulus (23°C)	ISO 178	MPa	2450
Charpy Notched Impact (23°C)	ISO 179/eA	KJ/m^2	5.8
THERMAL			
Melting Point (10 C/min)	ISO 3146	°C	166
DTUL @ 1.80 MPa	ISO 75-1, -2	°C	100

Processing Guidelines For Amcel KP20 Acetal Copolymer

Melt Temperature 185°C - 195°C Mold Temperature 80°C - 90°C

Technical Information: www.AmcelOnline.com

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colorants or other additives may cause significant variations in data values. Properties of molded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use.

To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication.

Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones which exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique, or material mentioned in this publication should satisfy themselves that they can meet all applicable safety

We strongly recommend that users seek and adhere to the manufacturer's current instructions for handling each material they use, and to entrust the handling of such material to adequately trained personnel only. Please log on to AmcelOnline for the appropriate Materials Safety Data Sheets (MSDS) before attempting to process Amcel products.

The products mentioned herein are not intended for use in medical or dental implants.